

IFI Practice Case

Changing Epidemiology of IFIs: Is Antifungal Resistance Really an Issue?

Back to IFI Practice Case

PETER G. PAPPAS, MD, FACP

William E. Dismukes Professor of Medicine Principal Investigator, Mycoses Study Group Division of Infectious Diseases University of Alabama at Birmingham Birmingham, AL

- Laboratory: WBC 0.01; Hct 23%, platelets 27K
- LFTs, fluid balance profile, UA are normal
- PA and lateral CXR reveal RLL mass/infiltrate
 - No pleural effusion is noted

- Serum Aspergillus Galactomanan = 3.51
- Bronchoscopy bloody secretions in right mainstem bronchus
- Pathology:
 - Fungal hyphae consistent with Aspergillus species are present in GMS stain of BAL fluid

Which antifungal regimen would you choose for this patient?

Follow-up

- Cultures of BAL grew *Aspergillus fumigatus*
- MICs were as follows:

Itraconazole	4.0 µg/mL
Voriconazole	4.0 µg/mL
Posaconazole	0.5 µg/mL
Micafungin	0.1 µg/mL
Amphotericin B	0.25 µg/mL

Brief History of Azole Resistance in *Aspergillus* spp.

- First recognized in 1990's in Europe
- Linked to the prolonged use of azoles in patients (e.g., UK), extensive agricultural use (e.g., The Netherlands, Denmark), and extensive use of azoles in non-agricultural industry (e.g., paints, building material, etc.)
- Originally there was no clear impact on treatment outcomes

Resistance Among Aspergillus spp.

- Intrinsic resistance....well described in nonfumigatus Aspergillus (e.g., A. lentulus, A. terreus)
- Acquired resistance to azoles, usually through ongoing or prior exposure

Mechanisms of 'Epidemic' Resistance

- Mutations of CYP51A gene (e.g., TR/L98H) are common to most azole-resistant isolates
- Resistance to itraconazole is most common; multiple azoles (e.g., itraconazole, voriconazole, posaconazole) is less common
- Mechanism is less well understood, some component of increased efflux pump activity
- Echinocandin/polyene resistance less common and less well understood

Emergence of Azole Resistance in A. fumigatus

Susceptibility results obtained by CLSI/EUCAST microdilution (azoles) or by Etest (echinocandins) for four sequential isolates obtained from a CGD patient over a 127-week period.

lsolate no	Week of	MIC (µg/mL)							
130/010 110.	collection	Itraconazole	Voriconazole	Posaconazole	Anidulafungin	Caspofungin*			
1	0	0.125/0.5	0.5/1	0.016/0.125	0.004	0.064			
2	108	0.25/0.5	0.5/1	0.031/0.125	0.004	0.064			
3	125	>16/>4	4/>4	0.25/0.5	0.004	0.064			
4	127	>16/>4	4/>4	0.25/1	0.004	0.125			
Controls									
NCPF2109	NA	0.063/0.5	0.125/1	<0.016/0.125	0.004	0.064			
TR/L98H	NA	>16/>4	8/>4	0.5/0.5	ND	0.25			

*MICs are rounded to nearest upper two-fold dilution value for the Etest endpoints. Arendrup MC, et al. *PLoS One*. 2010;5(4):e10080.

Surveillance Collaboration for *Aspergillus* Resistance in Europe (SCARE)

UMC 🟶 St Radboud

Azole Resistance by *Aspergillus* in The Netherlands

	Table 1. Characteristics of screened susceptible and resistant					
	isolates of Aspergillus s	pp., the Netherlands, 2	007-2009*			
		No. (%) susceptible,	No. (%) resistant,			
	Source and species	n = 1,978	n = 84			
	Specimen source					
	Sputum	1,397 (70.6)	64 (76.2)			
	Ear swab	176 (8.9)	3 (3.6)			
	BAL fluid	97 (4.9)	6 (7.1)			
	Bronchus secretion	66 (3.3)	2 (2.4)			
	Throat/nasal swab	66 (3.3)	1 (1.2)			
	Tissue	55 (2.8)	5 (6.0)			
	Skin swab/nail	38 (1.9)	1 (1.2)			
	Mouth wash	26 (1.3)	1 (1.2)			
	Pus/wound swab	16 (0.8)	1 (1.2)			
	Bronchial wash	11 (0.6)	0			
	Feces	8 (0.4)	0			
	Unknown	22 (1.1)	0			
	Species					
	A. fumigatus	1,710 (86.5)	82 (97.6)			
	A. flavus	98 (5.0)	0			
	A. niger	52 (2.6)	2 (2.4)			
	A. terreus	35 (1.8)	0			
	A. nidulans	14 (0.7)	0			
	A. versicolor	13 (0.7)	0			
van der Linden .IW et al	A. glaucus	6 (0.3)	0			
Emerg Infect Dis.	Unknown	50 (2.5)	0			
2011;17:1846-54.	*BAL, bronchoalveolar lava	ge.				

Azole Resistance by *Aspergillus* in The Netherlands

atologic	Proven pulmonary aspergillosis	1	TR/I 98H				
atologic			11020011	4	None	VCZ	Died
vHD	Proven pulmonary aspergillosis	4	TR/L98H	8	VCZ (>1 mo)	VCZ	Died
loid leukemia, allo-HSCT	Proven pulmonary aspergillosis	1	TR/L98H	8	ITZ (2-4 wk)	VCZ	Died
kin lymphoma, , GvHD, lung wities	Probable pulmonary aspergillosis	2	TR/L98H	16	VCZ (>1 mo)	VCZ	Died
rcinoma with astasis	Probable pulmonary aspergillosis	1	TR/L98H	1	None	VCZ	Died
kin lymphoma	Proven pulmonary and CNS aspergillosis	1	TR/L98H	16	None	VCZ, CAS, AMB	Died
splantation for failure after ate treatment arteritis	Proven pulmonary and CNS aspergillosis	5	TR/L98H	2	None	AMB, VCZ	Died
loid leukemia, CT, GvHD	Proven pulmonary and CNS aspergillosis	3	TR/L98H	4	FCZ (1-2 wk)	VCZ, CAS, AMB, POS	Survived
	, allo-HSCT kin lymphoma, GWHD, lung xvities vities tricinoma with tastasis kin lymphoma splantation for failure after cate treatment arteritis sloid leukemia, CT, GVHD =-SCT, allogeneio 1 aconazole; CNS, ce	allo-HSCT aspergillosia kin lymphoma, CvHD, lung cvHD, lung trainagenergillosia vitiles cvHD, lung trainagenergillosia cvHD, lung trainagenergillosia probable pulmonary aspergillosia proven pulmonary and CNS aspergillosia cNS aspergillosia trainagenergillosia cNS aspergillosia cNS aspergillosia	allo-HSCT aspergillosis killomphoma, CVHD, killowithomary 2 cVHD, killowithomary aspergillosis vittiso probable pulmonary 1 tartasis probable pulmonary and 1 tartasis Proven pulmonary and 1 splantation for Proven pulmonary and 5 failure after CNS aspergillosis atterise CNS aspergillosis SCT, asperaite CNS aspergillosis SCT, asperaite hematopriorise torm and transplantation; C 5	allo-HSCT aspergillosis (ovH0) aspergillosis (ovH0) aspergillosis vitico aspergillosis vitico aspergillosis vitico aspergillosis katasis aspergillosis katasis aspergillosis katasis aspergillosis splantation for Proven pulmonary and TR/L98H palnatation for Proven pulmonary and TR/L98H atte treatment CNS aspergillosis atte treatment CNS aspergillosis atte treatment Strole pulmonary and CT, GvH0 CNS aspergillosis SCT, allogende hematopoids tesm cell transplantation, GvH0, graft-verse	allo-HSCT aspergilicais in Imphoma, CvH0, sepergilicais TR/L98H in Imphoma aspergilicais vities reconstruction in Imphoma Probable pulmonary TR/L98H iarbasis aspergilicais in Imphoma Probable pulmonary and TR/L98H iarbasis aspergilicais aspergilicais TR/L98H application for Proven pulmonary and ataria TR/L98H application for Proven pulmonary and attor teatment CNS aspergilicais attor teatment CNS aspergilicais attor teatment TR/L98H attor teatment TR/L98H	allo-HSCT aspergilicais kin imphoma, (pHD), lump aspergilicais TR/L98H 16 VCZ (>1 mo) (pHD), lump aspergilicais TR/L98H 1 None vities TR/L98H 1 None tarbasis aspergilicais 1 None tarbasis aspergilicais 1 None tarbasis aspergilicais 1 None aspargilicais TR/L98H 16 None cNS aspergilicais TR/L98H 16 None plantation for Proven pulmonary and TR/L98H 2 None taiture after CNS aspergilicais attribute 2 None taiture after CNS aspergilicais 3 TR/L98H 4 FCZ (1-2 wk) CT, GVHD CNS aspergilicais 3 TR/L98H 4 FCZ (1-2 wk)	allo-HSCT aspergillosis kill hymphoma, CvHD, lung Probable pulmonary 2 TR/L98H 16 VCZ (>1 mo) VCZ kill hymphoma aspergillosis TR/L98H 16 VCZ (>1 mo) VCZ kill hymphoma probable pulmonary 1 TR/L98H 1 None VCZ kartasis aspergillosis 1 TR/L98H 1 None VCZ kartasis aspergillosis 1 TR/L98H 16 None VCZ, CAS, AMB splantation for Proven pulmonary and 1 TR/L98H 16 None VCZ, CAS, AMB splantation for Proven pulmonary and 5 TR/L98H 2 None AMB, VCZ taiture after CNS aspergillosis attretatereathereat

van der Linden JW, et al. Emerg Infect Dis. 2011;17:1846-54.

Aspergillosis due to Voriconazole Highly Resistant *Aspergillus fumigatus* and Recovery of Genetically Related Resistant Isolates From Domiciles

Jan W. M. van der Linden,^{1,2,a} Simone M. T. Camps,^{1,2,a} Greetje A. Kampinga,³ Jan P. A. Arends,³ Yvette J. Debets-Ossenkopp,⁴ Pieter J. A. Haas,⁵ Bart J. A. Rijnders,⁶ Ed J. Kuijper,⁷ Frank H. van Tiel,⁸ János Varga,⁹ Anna Karawajczyk,¹⁰ J. Zoll,^{1,2} Willem J. G. Melchers,^{1,2} and Paul E. Verweij^{1,2}

¹Department of Medical Microbiology, and ²Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, ³Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, ²Department of Medical Microbiology, VU-University Medical Centre, Amsterdam, ⁵Department of Medical Microbiology, University Medical Centre Urecht, ⁴Department of Medical Microbiology, VU-University Medical Centre, Amsterdam, ⁵Department of Medical Microbiology, University Medical Centre, and ⁸Department of Medical Microbiology, University Medical Centre Maasticht, The Netherlands, ⁹Department of Microbiology, University of Szeged, Hungary, and ⁴EadBarma Medicine B.V., Nijmegen, The Netherlands

van der Linden JWM, et al. Clin Infect Dis. 2013;57:513-20.

Aspergillosis Due to Voriconazole Highly Resistant A. *fumigatus*

Saul	Month of loolation/		N	1IC (mg	/L)		Aspamilus	Provious Azolo		
Age	Site	City	ITZ	VCZ	POS	Underlying Condition	Disease [30]	Exposure ^a	Treatment	Outcome at 12 w
F/11	Dec 2009/sputum	Utrecht	4	>16	025	Relapse ALL, HSCT, GVHD	Probable IA	None	VCZ, CAS	Persistent infectio
M/70	Jan 2010/ear	Amsterdam	>16	>16	2	Chronic otitis externa, sinusitis, and paralysis of abducens nerve	IA ^b	None	L-AMB, AND	Persistent infection
F/51	Jan 2010/ abdominal abscess	Nijmegen	2	>16	0.5	Kidney transplant	Proven IA	None	VCZ, POS	Died
F/9	Feb 2010/sputum	Amsterdam	4	>16	0.5	Cystic fibrosis	No IA	None	None	Alivo
M/69	Feb 2010/sputum	Amsterdam	>16	>16	2	Lung carcinoma, radiation	No IA	None	None	Alive
M/54	Mar 2010/sputum	Groningen	1	>16	025	Multiple myeloma, autologous HSCT, relapse	Probable IA	None	VCZ, L-AMB	Died
F/54	Mar 2010/sputum	Groningen	16	>16	0.5	Cystic fibrosis, bilateral lung transplant	Proven IA	VCZ	L-AMB	Alive
F/85	May 2010/biopsy	Amsterdam	4	>16	1	Chronic otitis after chole steatoma surgery	Proven IA	None	Surgery, L-AMB	Alive
M/76	May 2010/sputum	Amsterdam	>16	>16	1	Lung fibrosis	None	None	None	Alive
M/70	Jun 2010/sputum	Amsterdam	1	>16	025	High energetic trauma, ICU admission	None	None	None	Died
M/59	Jul 2010/brain biopsy	Amsterdam	4	>16	1	β thalassemia and diabetes mellitus	Proven IA	None	VCZ, L-AMB, CAS	Died
F/21	Sep 201 0/sputum	Nijmegen	2	>16	0.5	Cystic fibrosis	ABPA	VCZ	None	Alive
F/49	Oct 2010/sputum	Groningen	>16	>16	2	COPD, unilateral lung transplant	None	None	L-AMB, VCZ	Alive
F/64	Nov 2010/sputum	Leiden	>16	>16	2	COPD	No IA	None	None	Alive
F/50	Jan 2011/sputum	Utrecht	>16	>16	1	NH B-cell lymphoma, allo-SCT	Probable IA	VCZ	VCZ	Died

van der Linden JWM, et al. Clin Infect Dis. 2013;57:513-20.

Conclusions

- Emergence of azole resistance in Aspergillus spp. is real and expanding to regions outside of Europe, including Asia, India and the Middle East
- Some regions report azole-resistance rates of 10%–20%
- Outcomes are generally poor when confronted with one of these organisms in the clinical setting
- Traditional antifungal susceptibility testing for azole resistance should become more routinely available, especially in regions of the world where antifungal prophylaxis is commonly practiced. Rapid assays to determine resistance are in development.
- Primary therapy with a polyene +/- echinocandin should be considered for IA, especially in regions where azole resistance is common

Which antifungal regimen would you choose for this patient now?

- Blood cultures are obtained. Vancomycin and fluconazole 400 mg/d are added empirically. BP becomes more stable, but otherwise he remains febrile and there is little clinical change.
- On post-op day 6, blood cultures return positive for yeast, which is subsequently identified as *Candida* glabrata.

What is the best choice for antifungal therapy at this time?

5

Antifungal Susceptibility for Candidemia Isolates in Atlanta and Baltimore, 2008–2011 Lockhart SR, et al. J Clin Microbiol. 2012;50:3435-42.

	Susceptib	ility profile o	of Atlanta isola	tes	Susceptibili	ty profile of Ba	ltimore isolates	
Species and antifungal agent	No. of isolates	MIC ₅₀ (µg/ml)	MIC ₉₀ (µg/ml)	% Resistant isolates	No. of isolates	MIC ₅₀ (µg/ml)	MIC ₉₀ (µg/ml)	% Resistant isolates
All species	1141				1068			
Fluconazole		1	16	8.2		1	16	6.5
Voriconazole		0.06	0.5	1.1		0.06	0.5	0.9
Caspofungin		0.06	0.25	1.0		0.06	0.25	1.0
Anidulafungin		0.03	1	1.0		0.03	1	1.0
Micafungin		0.03	1	1.0		0.03	1	1.0
C. albicans	489				388			
Fluconazole		0.5	2	2.2		0.5	1	2.3
Voriconazole		0.03	0.125	0.6		0.03	0.125	1.3
Caspofungin		0.03	0.06	0.6		0.03	0.06	0.3
Anidulafungin		0.015	0.06	0.4		0.03	0.06	0.3
Micafungin		0.03	0.03	0.4		0.015	0.03	0.3
C. glabrata	318				352			
Fluconazole		8	64	13.2		8	64	10.8
Voriconazole		0.25	2			0.25	1	1
Caspofungin		0.06	0.125	2.5		0.06	0.125	2.3
Anidulafungin		0.06	0.125	3.1		0.06	0.125	2.3
Micafungin		0.015	0.03	2.8		0.015	0.03	2.5

Candida Species Susceptibility Profile

Candida spp.	AMB*	FLUC	ITRA	VOR	Echinocandins
C. albicans	S	S	S	S	S
C. tropicals	S	S	S	s	s
C. parapsilosis	s	s	s	S	S/?
C. glabrata	S/NS	S ^{DD} / R	S ^{DD} / R	S/NS	S / R
C. krusei	S/NS	R	S ^{DD} to R	S	S
C. lusitaniae	S/R	S	S	S	s

*No established breakpoints S = susceptible; S^{D0} = susceptible-dose dependent; R = resistant; I = intermediate; NS, non-susceptible

Candida: Emerging Resistance Issues

- C. krusei
 - Fluconazole resistant
- C. glabrata
 - Azoles (10%-25% of all isolates)
 - Echinocandins (3%-10% of all isolates)
 - Azole and echinocandin co-resistance (10%-20% of azole-R isolates)
- C. parapsilosis
 - Echinocandins (elevated MICs, intrinsic)
 - Azoles (~4% acquired)

Rare species

- Intrinsic resistance to azoles and echinocandins
- C. guilliermondii, C. rugosa

Pfaller MA, et al. J Clin Microbiol. 2007;45:735-45.

Geographic Variability of *Candida* spp.

		Spec	ies distribution (%) by	region (total no. of isola	tta).+	
Species-	APAC (44,674)	EU (109,643)	AF/ME (8,250)	LAM (27,395)	NAM (11.682)	Total. (201.633
C. albicans	64.4	67.9	67.1	51.8	48.9	63.8
C. glabruta	12.6	11.3	8.8	7.4	21.1	11.6
C. tropicalis	11.7	4.9	6.6	13.2	7.3	7.7
C parapailous	7.4	4.2	6.0	10.3	13.6	6.3
. kriusei	1.2	3.4	1.6	1.4	3.1	2.5
guilliermond/s	0.4	0.5	0.1	2.2	0.5	0.7
inconspicua	<0.1	0.5		<0.1	<0.1	0.3
nimosa .	0.4	< 0.1	< 0.1	1.2	<0.1	0.3
C norvegensis	<0.1	0.2	<0.1	<0.1	0.2	0.1

Pfaller MA, et al. J Clin Microbiol. 2010;48:1366-77.

Trends in Fluconazole Resistance Among *Candida* Isolates as Determined by CLSI Disk Diffusion Testing, 1997–2007 Pfaller MA, et al. J Clin Microbiol. 2010;48:1366-77.

	1997-200	1	200)-305	4	2005-3307		
Species	No. of isolates tested	₩ R.	No. of isolates tested	₩R	No. of polates tested	15 B	
albicunis	30,152	0.0	71.027	1.4	\$7,598	1.4	
, glabrata	5.634	19.2	12.963	15.9	10.342	15.4	
ropicalis	2,996	3.6	8,496	4.5	7.050	3.6	
paramilour	2.633	2.5	7.783	15	5.005	3.6	
kruwi	1.207	65.8	2.840	77.5	2 230	70.3	
cuilliermondi	367	12.5	5012	0.0	508	14.2	
huritomine	276	2.9	674	4.3	550	6.6	
ketter	182	3.3	527	3.6	517	17	
inconspicuo	0	55.6	276	52.2	290	54.1	
Taminta	173	17.1	175	12.5	247	6.0	
MADORA	35	34.3	238	50.7	134	10.4	
Aubliniousis	1	0.0	113	27	197	2.0	
manipularis	11	54.5	135	36.3	113	46.0	
linabelieu	7	0.0	-80	37.5	50	14.0	
wake	-	1.0	20	10.0	67	11.0	
nefficilian	1	0.0	47	6.0	40	150	
minula		4014	40	0.0	57	1.5	
antinsita		0.0	50	28.0	20	150	
walida	4	10.0	0	66.7	17	58.7	
Testeman dir			10	0.0	12	71	
nuicherana			10	0.0	8	0.0	
handoni			6	0.0	T	22.2	
- mathanidea			6	0.0	7	0.0	
nollis					6	110	
disputienda			3	50.0	4	50.0	
- Frankland			-	20/0	2	80.0	
ampica					3	50.0	
- diaminant					3	0.0	
Augusti					ĩ	0.0	
and produces					+	0.0	
- Print Print					2	0.0	
Administra	20.000	100 0	1 1 1 1 1	8.2	2 414	0.0	
anatata spp.	2,591	10.5	0,180	5,2	2,258	10,1	

Fluconazole and Voriconazole Susceptibility by Global Region

	(A stalling and	AP/	AC.	EL	1	AF/1	dB-	LA	M	NA	M
Species	agent	No. of isolates	a n	No. of todates	≪ R	No. of isolates	₩R.	No. of isolates	≡ R	No. of isolates	s R
C. albicans	Fluconazole Voriconazole	28,781 27,827	0,9 0,8	74,408 72,873	1.3 1.1	5,539 5,502	0.6 0.3	14,178 13,711	2.1 1.7	5,718 5,681	5.1 3.6
C. glabraiu	Fluconazole Voriconazole	5,629 5,515	13.0 8.2	12,439 12,288	16.3 9,8	728 705	16.2 8.1	2,039 2,000	15.1 11.3	2,470 2,460	19.5 14.6
C. tropicalis	Flueomazole Voriconazole	5,178 5,062	6.5 8.4	5,349 5,128	2.9 3.9	544 542	2.6 2.4	3,625 3,522	2.6 3.7	850 836	4.4
C. parapsilosis	Flucomazole Voriconazole	3,294 3,120	43 1.7	4,578 4,487	2.6 1.1	499 496	15.0 11.1	2,830 2,779	2.1 0.9	1,587 1,517	3.5 2.4
C. krusel	Fluconazole Voriconazole	532 516	73.5 5.0	3,678 3,637	80.8 7,7	134 134	72.4 4.5	370 351	66.8 14.0	361 363	74.0 5.5
C guilliermondii	Fluconazole Voriconazole	178 175	13.5 10.9	567 558	13.8 6.1	12 12	8.3 0.0	590 567	9.0 3.7	63 63	7.9 4.8
С. тестъркиа	Fluconazole Voriconazole	4	25.0 0.0	558 555	53.0 3.8			2	100.0 .50.0	22	100.0
C rugana	Fluconazole Voriconazole	165 145	32.1 6.9	89 87	10.1 1.1	1	0.0 0.0	139 138	55.5 32.8	9	27.2 11.1
C. norvegensis	Eloconazole Vericonazole	7	14.3	204 203	49.0	- 1	0.0	13	0.0	21 21	0.0

Pfaller MA, et al. J Clin Microbiol. 2010;48:1366-77.

Invasive Fungal Infections Current and Emerging Strategies Toward Improved Outcomes

	TABLE 4. In vitro susceptibilities of fluconazole-resistant isolate Candida spp. to voriconazole as determined by CLSI disk diffusion testing ^a						
	Species	No. of isolates tested	% S	% SDD	% R		
	C. albicans	1.782	28.1	8.4	63.6		
	C. plabrata	3,550	19.1	21.7	50.2		
	C. popicalis	620	17.0	15.3	67.7		
Voriconazole	C naransilosis	431	39.2	20.4	30.4		
vonconazore	C. krusei	3.889	79.6	11.3	9.7		
Susceptibility of	C suilliermondii	157	43.9	16.6	30.5		
Susceptibility of	C. Insitaniae	63	55.6	17.5	27.0		
Eluconazolo	C kebr	27	66.7	7.4	25.9		
Fluconazoie-	C. inconspicua	297	83.8	10.1	6.1		
Desistant Coult	C. famata	62	37.1	24.2	38.7		
Kesistant Canaiaa	C. rugosa	242	.28.1	21.5	50.4		
	C. dublimensis	8	62.5	0.0	37.5		
Isolates	C. norvegensis	100	81.0	10.0	9.0		
100111000	C. Inolytica	37	29.7	27.0	43.2		
	C. sake	9	44.4	11.1	44.4		
	C. pelliculosa	6	16.7	16.7	66.7		
	C. apicola	1	0,0	0.0	100.0		
	C. zeylanoides	15	46.7	26.7	26.7		
	C. valida	14	71.4	7.1	21.4		
	C. intermedia	1	100.0	0.0	0,0		
	C. haemudonii	1	0.0	0.0	100.0		
	C. humicola	3	0,0	33.3	66.7		
	C. lambica	4	25.0	50.0	25.0		
	C. ciferrii	4	0.0	100.0	0.0		
	Candida spp.b	850	47.6	14.6	37.8		
Pfaller MA, et al. <i>J Clin</i> Microbiol. 2010;48:1366-77.	ⁿ Isolates obtained voriconazole disk diff SDD, 14 to 16 mm; I ^b Candida species r	from 133 institutions, usion susceptibility ca $\xi_s \le 13$ mm. not otherwise identifie	2001 to 2007 tegories wer id.	The zone dia è as follows: S,	meters for ≥17 mm:		

Resistance of C. glabrata to Fluconazole and Echinocandins in Multicenter and Hospital-Based Surveillance Studies in the US

Study Type (ref)	Time period	No. of isolates	% FLU-R	% ECH-R
Sentinel ¹	2008–2011	526	9.1	2.3
Population based ²	2008–2011	670	12.0	3.0
Hospital 1 ³	2004–2007	31	16.0	0.0
Hospital 2 ⁴	2001–2010	313	24.9	6.7

1. Pfaller MA, et al. *J Clin Microbiol.* 2012;50:1199-1203. 2. Cleveland AA, et al. *Clin Infect Dis.* 2012; 55:1352-61. 3. Diekema DJ, et al. Diag Microbiol Infect Dis. 2013;75:45-8. 4. Alexander BD, et al. *Clin Infect Dis.* 2013;56:1724-32.

Variables Impacting Treatment Outcome or Mortality of C. glabrata Infection

		ment cess	Mor	tality
	10-Day	30-Day	10-Day	30-Day
Variable	PVa	lues (Univ	ariable An	alysis)
Adult vs pediatric (age <18 y)	NS	NS	02	NS
Underlying disease	NS	NS	NS	NS.
Malignancy	NS	NS	.023*	.033"
End-stage liver disease	NS	NS	.0392	0124"
Acute renal failure	NS	NS	NS	0295
Breakthrough infection	NS	NS	NS.	.0018
Directed therapy drug class				
Polyene vs other	NS.	NS	NS	0073"
Polyene vs azole	NS	N5	NS.	.0223
Polyene vs echinocandin	NS	NS	NS	.0099
FKS mutation	.0391	NS	NS	.0374
Echinocandin-resistant MIC				
Caspofungin	NS	NS	NS	0119
Micafungin	NS	NS	NS	.025
Prior antifungal Therapy	NS	NS	NS	005
Azole	NS	NS	NS	.0017*
Under intensive care [®]	N5	NS	<.00014	<.001*

Variables Impacting Treatment Outcome of C. glabrata Invasive Candidiasis

TABLE 5 Association of FKS mutations, prior echinocandin exposure, and echinocandin MICs with clinical failure

Predictor variable	No. of successes (n = 44)	No. of failures $(n = 22)$	P value.	Odda ratio	95% CI	% PPV"	% NPV*
Presence of FKS mutation	1	9	0.0001	29.7	3.44-257.5	90 (9/10)	77 (43/56)
Prior echinocandin exposure	8	13	0.002	6.50	2.07-20,4	62 (13/21)	80 (36/45)
Caspofungin MIC of >0.5 µg/ml (BMD-RPMI)	6	7	0.10	2.96	0.85-10.3	54 (7/13)	72 (38/52)
Caspofungin MIC of >0.06 µg/ml (BMD-AM3)	2	8	0.002	12.0	2,27-63,4	80 (8/10)	75 (42/56)
Caspofungin MIC of >0.25 µg/ml (YeastOne)	6	7	0.03	4.39	1.31-14.7	60 (9/15)	75 (38/51)
Caspofungin MIC of >0.25 µg/ml (Etest)	3	11	0.0001	13.7	3,24-57.7	79 (11/14)	79 (41/52)

Negative predictive value (NPV) is the percentage of negative tests associated with m

Shields RK, et al. Antimicrob Agent Chemother. 2013; 57: 3528-35.

C. parapsilosis and Echinocandins

- C. parapsilosis isolated in 53% of cancer pts who developed candidemia while receiving caspofungin therapy¹
- Strong correlation between caspofungin usage and a 400% increase in C. parapsilosis BSI2
- Species-specific incidence of C. parapsilosis BSI has doubled in US between 1993 and 2011³
- Pre exposure to caspofungin associated with a decreased prevalence of C. albicans in favor of C. parapsilosis⁴
- Improved response in treating pts with C. parapsilosis BSI with high-dose caspofungin (150 mg/d) vs standard dose (70 mg load/50 mg daily): 81% vs 61%; not statistically significant⁵

1. Sipsas NV, et al. Cancer. 2009;115:4745-52.

- Sipsas NV, et al. Cancer. 2009;115:4745-52.
 Forrest GN, et al. J Infect. 2008;56:126-9.
 Cleveland AA, et al. Clin Infect Dis. 2012;55:1352-61.
 Lortholary O, et al. Antimicrob Agents Chemother. 2011;55:532-8.
 Betts RF, et al. Clin Infect Dis. 2009;48:1676-84.

Candida Resistance Summary

- Greatest concern is still azole-resistant C. glabrata
- Potential emergence of less common species with inherent or acquired azole resistance
- Most Candida remain highly susceptible to echinocandins, but emergence of acquired (C. glabrata) and intrinsic (C. parapsilosis) resistance is a concern

What is the best choice for antifungal therapy at this time?

IFI Practice Case

Assessing the Value of New Diagnostic Approaches in Clinical Mycology: A Potential Win-Win Situation

Back to IFI Practice Case

THOMAS F. PATTERSON, MD, FACP, FIDSA

Chief, Division of Infectious Diseases Professor of Medicine Director, San Antonio Center for Medical Mycology The University of Texas Health Science Center at San Antonio San Antonio, TX

What are likely diagnostic considerations?

What would you do to establish a diagnosis?

What is the most appropriate antifungal management?

Diagnosis of Invasive Fungal Infection

- What is the likely pathogen in breakthrough?
- Should we monitor triazole levels?
- Is bronchoscopy a useful investigation?
- Is triazole resistance an issue?
- Is there a role for surgery?

Summary: Posaconazole & Voriconazole Prophylaxis and Breakthrough IFI

	Posaconazole	Fluconazole
Ν	605	539
Breakthrough IFI	20 (3%)	45 (8%)
Aspergillus (Culture/GM)	45%	80%
Mould	20%	9%
Candida	35%	10%

• Voriconazole:* 45 pts with secondary prophylaxis; relapses: candidemia (1), scedosporiosis (1); 1 new mucormycosis

Ullmann AJ, et al. *N Engl J Med.* 2007:356:335-47. Cornely OA, et al. *N Engl J Med.* 2007:356:348-59. *Cordonnier C, et al. *Haematologica.* 2010;95:1762-8.

How Can We Make a Diagnosis of Invasive Aspergillosis?

- Importance of culture confirmation when possible
- Utility of "halo" sign in neutropenic patients
 Not specific for Aspergillus
- Non-culture-based methods to facilitate diagnosis
 - Galactomannan, $(1\rightarrow 3)$ - β -D-glucan
 - PCR not yet established—but much closer!
- Possible impact of antifungal resistance

Importance of assessing patient's risk for invasive fungal infection

Is Bronchoscopy Useful?

- Yield culture and cytology on bronchoalveolar lavage (BAL) 30% in neutropenic patients with abnormal CT and proven invasive aspergillosis
- More likely in those with extensive changes and less antifungal exposure

Reichenberger F, et al. Bone Marrow Transplant. 1999: 24:1195-9.

Utility of Galactomannan (GM) Detection in Bronchoalveolar Lavage (BAL) Samples

Number of patients: 160	Sensitivity (%)	Specificity (%)	Positive Predictive Value (%)	Negative Predictive Value (%)
Serum	47	93	73	82
BAL	85	100	100	88

GM detection in CT-based BAL fluid has a high positive predictive value (PPV) for diagnosing invasive pulmonary aspergillosis (IPA) early in untreated patients GM index <0.5 in BAL virtually excludes diagnosis

Becker MJ, et al. Br J Haematol. 2003;121:448-57. D'Haese J, et al. J Clin Microbiol. 2012;50:1258-63.

Platelia Aspergillus EIA for Detection of Galactomannan in BAL Fluid in Solid Organ Transplant Recipients

	GM				
Group	0.	5 cutoff	1.0 cutoff		
	No. positive/ total no.	% (95% CI) ^c	No. positive/ total no.	% (95% Cl)	
Invasive pulmonary aspergillosis	9/11	81.8 (52.3-94.9)	9/11	81.8 (52.3-94.8)	
Surveillance controls"	5/119	4.2 (1.8-9.4)	4/119	3.4 (1.3-8.4)	
Diagnostic controls ^b	18/66	27.3 (18.0-39.1)	8/66	12.1 (6.2-22.1)	
Surveillance and diagnostic	23/185	12.4 (8.4-17.9)	12/185	6.5 (3.7-11.0)	
Noncolonized controls	11/150	7.3 (4.1-12.6)	2/150	1.3 (0.4-4.7)	
Colonized controls (Aspergillus or mold)	12/56	21.4 (12.7-33.8)	8/56	14.3 (7.4-25.8)	
Healthy controls with HIV infection	0/56	0 (0.0-6.4)	0/56	0 (0.0-6.4)	

- Sensitivity 81.8% and specificity 95.8% in lung transplant patients evaluated for infection or rejection
- Serum positive in 19.3% of pts with positive BAL sample
- False positive: lung transplant, colonization, radiographic abnormalities

EIA, enzyme immunoassay Husain S, et al. *Clin Vacc Immunol.* 2008;15:1760-3

GM & PCR vs. Culture & Histology for Antifungal Therapy in High-risk Hematology Patients

	Standard diagnosis group	Biomarker diagnosis group	p value
Fluconazole or itraconazole prophylaxis	1/94 (1%)	16/95 (17%)	<0.0001
Voriconazole or posaconazole prophylaxis	0/22	1/19 (5%)	0-67
Fluconazole prophylaxis	0/45	5/40 (13%)	0-02
Itraconazole, voriconazole, or posaconazole prophylaxis	1/71 (1%)	12/74 (16%)	0.002
Allogeneic stem-cell transplantation	0/92	16/99 (16%)	<0.0000
Acute leukaemia	1/30 (3%)	1/19 (5%)	1.0
Data are n/N (%).			

Morrissey CO, et al. Lancet Infect Dis. 2013;13:519-28.

Benefits of Screening with Serum PCR with High Negative Predictive Value

- Fewer missed diagnoses
- Faster diagnosis with better outcomes
- Reduced cost of prophylactic antifungal therapy or reduced cost of empiric therapy
- Of little value in patients on voriconazole or posaconazole prophylaxis

Therapeutic Drug Monitoring: Voriconazole Serum Concentration and Response

- Random voriconazole levels in patients with progression (n=17) or toxicity (n=11)
- Better responses in patients with higher levels
- Improved outcomes with dose escalation in patients with levels <2 mcg/mL

Smith J, et al. Antimicrob Agents Chemother. 2006;50:1570-2.

Measurement of Voriconazole Serum Concentrations

- Potential reasons to monitor include:
 - Nonlinear kinetic profile
 - Dependence on CYP2C19
 - Extensive metabolizers with 2to 4-fold lower exposure than heterozygous & poor metabolizers
- High inter-patient variability
- Prior studies failed to detect relationship between outcome and concentrations
 - Trend for lower responses with random levels <0.5 µg/mL
- Levels in hematopoietic stem cell transplantation (HSCT) undetectable in 15%

Lutsar I, et al. *Clin Infect Dis.* 2003;36:1087-93. Trifilio S, et al. *Cancer.* 2007;109:1532-5.

Posaconazole Plasma Concentrations and Global Response: IA

	No. of	Plasm	a C _{max}	Plasma C _{avg} No. (%) (No. (%) of
Quartile	subjects*	Mean ng/mL	CV (%)	Mean ng/mL	CV (%)	responders
1	17	142	51	134	45	4 (24)
2	17	467	27	411	21	9 (53)
3	17	852	15	719	12	9 (53)
4	16	1480	16	1250	28	12 (75)

 C_{avg} = average plasma concentration; C_{max} = maximum plasma concentration; CV = coefficient of variation.

*Data were available for 67 patients with available plasma concentrations of posaconazole.

MITT, modified intent to treat subset Walsh TJ, et al. *Clin Infect Dis.* 2007;44:2-12.

Posaconazole Therapeutic Drug Monitoring: A Reference Laboratory's Experience

- Posaconazole serum drug levels have wide inter-patient variability
- Posaconazole FDA briefing document recommends a serum level of >0.7 µg/mL
- Reference laboratory reported undetectable levels in 16.3% of samples; and 70.3% less than 0.7 µg/mL

Thompson GR, et al. Antimicrob Agents Chemother.2009;53:2223-4. Gubbins PO, et al. Antimicrob Agents Chemother. 2006;50:1993-9. Krishna GM, et al. Pharmacotherapy. 2007;27:1627-36. Krishna G, et al. Antimicrob Agents Chemother. 2009;53:958-66. Ullmann AJ, et al. Antimicrob Agents Chemother. 2006;50:658-66.

Ц,

Emerging Fungal Infections: *Scedosporium & Fusarium*

- Refractory to available agents: mortality 50% to >80%
- In vitro/in vivo: voriconazole, posaconazole, isavuconazole
- Potential activity of combination therapy: echinocandins
- Efficacy in patients refractory or intolerant to standard therapy:

Voriconazole	# pts	Response
Fusarium	11	45%
Scedosporium	10	30%
Posaconazole	# pts	Response
Fusarium	18	39%

Patterson TF, et al. N Engl J Med. 2009;361:287-96. Perfect JR, et al. Clin Infect Dis. 2003;36;1122-31. Raad I, et al. Clin Infect Dis. 2006;42:1398-403.

Emerging Resistant Mycoses: Mucormycosis

Apophysomyces elegans light microscopy (420 ×, cotton-blue stain) Anderson D. Lancet. 27 Jan 2005. <u>http://image.thelancet.com/extra/05let1078web.pdf</u>

Phaeohyphomycoses (Black Fungi)

- Mycotic infections caused by dematiaceous fungi (melanin in cell walls): Masson Fontana stain
- Tropical, subtropical and temperate zones
- 72 patients with disseminated infection
- Central nervous system, cutaneous
 - lesions, pulmonary disease
- Overall mortality: 79%
- Etiologic agents
 - Scedosporium prolificans (most common—42%); Bipolaris spicifera (8%), Wangiella dermatitidis (7%), Others: Phialemonium, Phialophora, Alternaria, Curvularia, Exserohilum, Exophiala...

Therapy: newer azoles, lipid AmB
 Revankar SG, et al. Clin Infect Dis. 2002:34:467-76.

Quantitative PCR Detection of DNA in Serum for Early Diagnosis of Mucormycosis

		Quantificatio	n Cyclu			
	Acory Assay	Muc1 Assay	Muc1 Assay	Rmuc Assay		
Amount of Mucorales, DNA in Volume Tested (10 µL)	Lichtheimia corymbifera/ L ramosa/L ornata	Rhizopus diyzae	Mucor racemosus/ M. ramosissimus	Rhizomuco pusitus		
300 fg	35/28/30	34	32/35	39		
30 tg	37/32/33	36	35/37	41		
15 tg	39/34/35	38	37/38	45		
7.5 tg	42/39/41	43	>48/>46	>46		
3.7 fg	>46/43/>46	>46	>46/>46	>46		
1910	>46/>46/>46	>46	>46/>46	>46		
0.9 to	>46	>46	>46/>46	>46		

DNA detected in 9/10 patients, 5/9 detected 1–8 days prior to first radiological or clinical features

Millon L, et al. *Clin Infect Dis.* 2013;56:e95-101. www.epa.gov/nerlcwww/moldtech.htm#primers

 Diagnostic evaluation/progress Day 2: BAL performed BAL galactomannan index positive: OD=1.0 Day 4 					
 Sputum culture – positive for yeast BAL fungal culture positive for Aspergillus flavus MICs 					
	AmB	Itra	Vori	Posa	
A. flavus	AmB 1 μg/mL	ltra 0.5 μg/mL	Vori 0.25 μg/mL	Posa 0.25 μg/mL	
A. flavus	AmB 1 μg/mL	ltra 0.5 μg/mL	Vori 0.25 μg/mL	Posa 0.25 μg/mL	

Lessons Learned: Patient Case 2 Diagnosis of Invasive Mould Infections

- Aspergillus: still the most important pathogen in breakthrough on prophylaxis
 - NB: other moulds are possible, especially in highly immunosuppressed patients
- Triazole levels: logistical problems and lack of target levels for prophylaxis—may be useful even with weight-based dosing
- Triazole resistance not widespread (?)
- Bronchoscopy with BAL GM: useful test

IFI Practice Case

Optimized Antifungal Prophylaxis for At-risk Patients: Impact of Host-related Factors

Back to IFI Practice Case

JOHN R. PERFECT, MD

James B. Duke Professor of Medicine Chief, Division of Infectious Diseases and International Health Duke University Medical Center Durham, NC

IFI Practice Case 3

If this patient was at your institution, would you include antifungal prophylaxis?

Microsporidiosis

- 1000 species in 144 genera
- Multiple lines of evidence that Microsporidian are fungi.
 - Beta-tubulin analysis suggest sister group to the Zygomycota*
- Water contamination, zoonosis, auto infection
- Immunosuppression: AIDS and immunosuppressive drugs
- Treatment: albendazole

* Keeling PJ, et al. Fungal Genet Biol. 2003;38:298-309.

Do you think antifungal prophylaxis could have prevented this infection?

Antifungal Prophylaxis: To Prevent or Not "The Principles"

- Safety (Do no harm)
- Efficacy (Evidence-based data)
- (Balance between IFD costs and Cost drug acquisition costs)
- (It is life-threatening or disease Consequence management altering)
- Prevalence (10% rule) Resistance
- (Azole/echinocandin resistance always lurking)

IFD, invasive fungal disease Perfect JR. Am J Med. 1993;94:233-4.

Prophylaxis is Really to Prevent Invasive Fungal Infections and to Allow the Underlying Disease to be Adequately Managed

Three examples of evidence-based antifungal prophylaxis in high-risk patients:

- (1) Patients with AML/MDS during neutropenia and bone marrow transplantation (Aspergillosis)
- (2) Intensive Care Unit (Candidiasis)
- (3) Advanced HIV infection and Cryptococcus infection (Cryptococcosis)

AML, acute myeloid leukemia: MDS, myelodysplastic syndrome

Bone Marrow Transplantation

- Landmark studies show fluconazole benefit of prophylaxis including long-term survival^{1,2}
- In certain patients mould infections may matter (itraconazole vs. fluconazole)³
 - In graft-versus-host disease, aspergillosis does matter (Posaconazole Prevention)⁴
- If integrate biomarkers, there may be less distinction between fluconazole vs. voriconazole⁵
- Cost depends on incidence of disease⁶

 1. Goodman JL, et al. N Engl J Med. 1992;326:845-51
 2. Slavin MA, et al. J Infect Dis. 1995;171:1545-52.

 3. Marr KA, et al. Blood. 2004;1003:1527-1533.
 4. Ullmann AJ, et al. N Engl J Med. 2007;356:335-347.

 5. Wingard JR, et al. Blood. 2010;116: 5111-8.
 6. Mauskopf J, et al. Am J Health Syst Pharm.

2013 70 1518-27

Antifungal Prophylaxis in Allogeneic HSCT Recipients with GvHD P=0.003 14 12 P=0.07 10 <u>P</u>=0.004 Percentage P=0.006 8 P=0.001 6 n=600 Posaconazole Fluconazole 2 n Breakthrough infections As*pergillus* breakthrough infections period Aspergillus time Any Study | Proven or probable invasive fungal infections HSCT, hematopoietic stem cell transplantation; GvHD, graft-versus-host disease Ullmann AJ, et al. N Engl J Med. 2007;356:335-47.

Micafungin vs. Fluconazole: Prophylaxis in HSCT

Randomized, double-blind, comparative study (N = 882)

	Micafungin	Fluconazole	
Result, % (n)	(n = 425)	(n = 457)	P Value
Overall success rate*	80.0% (340)	73.5% (336)	.03
Breakthrough infections	2% (7)	2% (11)	.481
Breakthrough aspergillosis	<1% (1)	2% (7)	.071
Use of empiric therapy	15.1% (64)	21.4% (98)	.024
Death	4.2% (18)	5.7% (26)	.322
Treatment-related adverse event	15.1%	16.9%	NS

*Defined as the absence of proven, probable, or suspected IFI during the study period.

van Burik JA, et al. Clin Infect Dis. 2004;39:1407-1416.

Duke Allogeneic HSCT – Current Fungal Prophylaxis Protocol

Risk Group	Fungal Prophylactic Regimen
Non-myeloablative MRD, MMRD, MUD and UCT	Voriconazole 200 mg BID through day +100
Myeloablative MRD, MMRD, URD and UCR	Voriconazole 200 mg BID through day +100
Graft-versus-host disease	Posaconazole 200 mg TID (alternative: voriconazole + inhaled ABLC)

MMRD, mismatched related donor; MRD, matched related donor; MUD, matched unrelated donor; UCT, umbilical cord transplant; ABLC, amphotericin B lipid complex.

Duke Retrospective Evaluation: Results 280 allogeneic HSCT episodes occurred in 257 patients (2009-2011) Proven/probable IFI identified in 22 transplant episodes (7.9%) - 14/22 (64%) proven - 8/22 (36%) probable Median onset of IFI post-HSCT was 95 days (range 1-980 days) Characteristic n=22 Median age, years (range) 54 (33-73) Patient Male gender, n (%) 9 (41) Characteristics Graft-versus-host disease, n (%) 14 (64) at IFI Onset 6 (27) Neutropenic, n (%) Underlying diagnosis · Aplastic anemia 1 (5) Acute lymphoblastic leukemia 3 (14) Acute myelogenous leukemia 8 (36) Chronic myelogenous leukemia 1 (5) Hodgkin lymphoma 1 (5) Myelodysplastic syndrome 2 (9) . . Multiple myeloma 1 (5) • Non-Hodgkin lymphoma 3 (14) T-cell leukemia/lymphoma 2 (9) **Fungal Pathogens Associated with IFIs** N=1 (4%) E Aspergillus spp N=5 (23%) Mucormycosis N=11 (50%) □ Candida spp Other * N=5 (23%) * Rhodotorula spp.

5

Retrospective Evaluation: Results

Characteristic	n=18
Median age, years (range)	64 (24–77)
Male gender, n (%)	11 (61)
AML, n (%)	13 (72)
MDS, n (%)	5 (28)
Induction chemotherapy, n (%)	3 (17)
Re-induction chemotherapy, n (%)	10 (56)
Other therapy, n (%)	5 (28)
Neutropenic, n (%)	14 (78)
Receiving prophylaxis, n (%)	8 (44)
-Fluconazole, n (%)	7 (39)
-Posaconazole, n (%)	1 (5)

Prophylaxis Needs Focus

- Genetic susceptibility¹
- Integrative pre-emptive strategies with biomarkers^{2,3,4}
- Maybe we could use these biomarkers to stop antifungals (negative predictive value) as well as start them early

Georgiadou SP, et al. Bone Marrow Transplant. 2013;48:141-3.
 Cordonnier C, et al. Haematalogica. 2010;95:1762-8.
 Maertens J, et al. Clin Infect Dis. 2005;41:1242-50.

4. Wingard JR, et al. Blood. 2010;116:5111-8.

Genetic Susceptibility for Aspergillosis and Candidiasis

- Prediction of risk for prophylaxis and pre-emptive strategies
- Progress is being made:
 - Aspergillosis
 - Plasminogen allele influences susceptibility to invasive aspergillosis in mice and humans¹
 - Toll-like receptor 4 polymorphisms (TLRs)²
 - Candidiasis
 - Dectin1/CARD9,³ CASPASE-12,⁴ cytokine genes,⁵ TLRs⁶

- Zaas AK, et al. PloS Genet. 2008;4:e1000101.
 Bochud PY, et al. N Engl J Med. 2008;359:1766-1777.
 Rosentul DC, et al. J Infect Dis. 2011;204:1138-1145.
 Rosentul DC, et al. Eur J Clin Microbiol Infect Dis. 2012;31:277-280.
 Johnson MD, et al. Clin Infect Dis. 2012;54:502-510.
 Plantiga TS, et al. J Infect Dis. 2012;205:934-943.

Zygomycosis Superinfections on Voriconazole

- More than 20 cases reported to date¹⁻⁹
 - Majority of patients
 - HSCT recipients receiving corticosteroids for GvHD <u>and</u>
 - Voriconazole prophylaxis
 - Is there a correlation? - Cancer patients¹⁰

- 27 patients with zygomycosis and 54 patients with invasive aspergillosis
- Of 27 patients, only 15 received voriconazole
- Only 15 met criteria for definite infection
- Transplant patients¹¹
 - 393 transplant recipients
 - Voriconazole more frequently associated with breakthrough infections due to Zygomycetes of Fusarium rather than Aspergillus (OR=24.0)

It is the voriconazole effect on the mould¹²

ayakulkeeree M, et al. Eur J Clin Microbiol Infect Dis. 2. Ritz N, et al. Eur J Pediatr. 2005;164:231-5.

 Chayakulkeeree M, et al. *Eur J Clin Microbiol Infect Dis.* 2006;25:215-29.
 Kobayashi K, et al. *Haematology.* 2004;89:ECR42.

2000,63,213-253. 3. Kobayashi K, et al. *Haematology*. 2004;89:ECR42. 5. Oren I, et al. *Clin Infect Dis*. 2005;40:770-1. 7. Siwek GT, et al. *Clin Infect Dis*. 2004;39:584-7.

9. Imhof A, et al. *Clin Infect Dis.* 2004;39:743-6. 11. Park BJ, et al. 44th ICAAC {Abstract M-666-2004] Marty FM, et al. N Engl J Med. 2004; 350:950-2.
 Vigorouz S, et al. Clin Infect Dis. 2005;40:e35-e37.
 Mattner F, tal. Scand J Infect Dis. 2004;36:312-4.
 Kontoyiannis DP, et al. J Infect Dis. 2004;36:312-4.
 Lewis R. et al. Virunence. 2011:2:348-55.

Fluconazole Resistance Among *Candida* Blood Isolates

			% Fluconazole Resistant			nt
Program	Years	# Tested	C. albicans	C. glabrata	C. parapsilosis	C. tropicalis
CDC	92-93	394	1	14	0	2
CDC	98-00	944	1	10	0	6
Quebec	94-98	442	1	9	0	0
SENTRY	97-00	2,047	1	7	0	1
EIEIO	98-01	254	0	10	0	0
ARTEMIS	01-02	3,724	1	9	1	1

At Duke, fluconazole-resistant strains: C. glabrata (50%); C. tropicalis (16%); C. albicans (12%); C. parapsilosis (6%).

Adapted from Pfaller MA, et al. Clin Microbiol Rev. 2006;19(2):435-447.

Itraconazole (ITZ) Resistance in *A. fumigatus* Isolates

1. Snelders E, et al. *PLoS Med.* 2008;5(11):e219. 2. Baddley JW, et al. *J Clin Microbiol.* 2009;47:3271-75. 3. van der Linden JW, et al. *Clin Infect Dis.* 2013;57:513-20.

- ITZ-resistant isolates were found in 32 of 1,219 patients with invasive aspergillosis over a 14year period¹
- ITZ-resistant isolates also showed elevated minimum inhibitory concentrations of voriconazole, ravuconazole, and posaconazole¹
- Recent USA (TRANSNET Data): 96% azole susceptible with *A. calidoustus* most resistant²
- Prophylaxis (Fungicides) in the environment associated with voriconazole-resistant aspergillosis³

Echinocandin Resistance is Not a Novelty

- Review of 293 episodes of *C. glabrata* bloodstream infection from 2001–2010
- Resistance to echinocandins increased from 4.9% to 12.3%
- Among 78 fluconazole-resistant isolates, 14.1% were resistant to echinocandin
- 7.9% harbored a FKS mutation and were related to prior echinocandin therapy
- 80% (8/10) of patients infected with FKS mutants exhibiting intermediate/resistant MICs to echinocandins failed to respond to echinocandin treatment
- Price to pay for echinocandin resistance, but not much in immunocompromised hosts*

Alexander BD, et al. Clin Infect Dis. 2013;56:1724-32. *Ben-Ami R, Kontoviannis DP. Virulence. 2012;3:95-7.

Prophylaxis in the Intensive Care Unit

- Double-blind, placebo-controlled study of caspofungin
- 222 adults included after screening 16,000 patients
- Incidence of proven/probable invasive candidiasis, placebo vs. caspofungin, was 16.7% vs. 9.8% (p=0.14)
- With a pre-emptive approach based on β-glucan, the number of proven/probable infections was significantly reduced
- No difference in secondary endpoints of mortality, initiation of antifungals, or length of stay
- Bottom line: We need to use our biomarkers!

Presented at the Society for Healthcare Epidemiology of America (SHEA) 2011 Annual Scientific Meeting, Dallas, TX. Abstract LB-15.

Results of Beta-D-Glucan-Driven ICU Strategy

- 64 study pts/>1000 pts screened
- 47 pts (pre-emptive); 17 pts (empiric)
- Sensitivity 100%; specificity 75%; PPV 30%; NPV 100% with 2 sequential positive tests
- Antifungal drugs had significant impact on lower BDG levels; rate of decline steeper with treatment
- Pre-emptive arm: 7.3% IFIs P= 0.47
- Empiric arm: 17.6% IFIs
- False positive rate 23% with 80 pg/mL x 2
- 4 pts (8.5%) receiving antifungal therapy despite negative BDG
- This is a pilot study; needs a large multicenter study

Hanson KE, et al. PloS One. 2012;7(8):e42282.

Prophylaxis for Cryptococcosis

- It works but has the landscape changed for another strategy??
- Fluconazole and itraconazole reduce frequency of primary cryptococcosis^{1,2} but IDSA Guidelines³ do not recommend it (relative infrequency, lack of survival benefit, possible drug- interactions, creation of drug-resistant strains, compliance, and costs)
- Prophylaxis for cryptococcal meningitis works in resourcelimited settings^{4,5,6} **BUT**
- Better Strategy: Pre-emptive strategy with cryptococcal antigen screening by Lateral Flow Assay^{7,8}

 1. Powderly WG, et al. N Engl J Med. 1995;332:700-5.
 2. McKinsey DS, et al Clin Infect Dis. 1999;28:1049-56.

 3. Perfect JR, et al. Clin Infect Dis. 2010;50:291-322.
 4. Chetchotisakd P, et al. HIV Med. 2004;5:140-3.

 5. Parkes-Ratanshi R, et al. Lancet Infect Dis. 2011;11:933-41.
 6. Chang LW, et al CoLina Database Syst Rev. 2005; CD004773.

 7. Meya DB, et al. Clin Infect Dis. 2010;51:448-55.
 8. Klausner JD, et al. Lancet Infect Dis. 2012;12:431-2.

CrAg Lateral Flow Assay: Method

A simple, cheap assay: could save lives and costs (A great translational merger of basic science and the business world)

CrAG, cryptococcal antigen Slide courtesy of Sean Bauman, PhD. Immuno-Mycologics, Inc. (IMMY)

IFI Practice Case

Optimizing Outcomes with Appropriate Antifungal Use Back to IFI Practice Case

> ELIZABETH S. DODDS ASHLEY PHARMD, MHS, FCCP, BCPS

Associate Director of Clinical Pharmacy Service Department of Pharmacy at the University of Rochester Medical Center Rochester, NY

- An 83-year-old man presents with primary complaint of cough for 3 months, CT scan notable for pneumothorax, new pleural effusion and pulmonary nodules
 - PMH:
 - Rheumatoid arthritis treated with leflunamide and rituximab
 - 2009 treated for actinomycosis
- Admitted for pigtail catheter placement and cultures of pleural fluid revealed Aspergillus fumigatus
- Therapy begun with voriconazole 400 mg po bid
 × 2 doses followed by 200 mg po bid
 - At day 7 of therapy, the following laboratory values are available:
 - Serum creatinine: 0.62 mg/dL
 - AST/ALT: 26/20 IU/L
 - Total bilirubin: 0.2 mg/dL
 - Voriconazole: 9 mcg/mL
 - Patient denies reports of any visual disturbances or hallucinations

Getting Antifungal Therapy Right-**Stewarding a Precious Resource**

- New antifungal stewardship programs have begun to emerge
 - Review of all new antifungal prescriptions or those subject to review
 - Guideline development for treatment, diagnostics and monitoring
 - Implementation of an antifungal management team
 - Mandatory ID consults for all patients with IFI
 - Weekly rounds in high-risk areas for appropriate prophylaxis

Reduction in Overall Antifungal Use

	Dispensed DDD/1,000 patient days		Cost of antifungal treatment			
	Pre- intervention	Intervention	Change (%)	Pre- intervention	Intervention	Change (%)
Voriconazole IV	246.14	168.77	-31.4	\$331,210.11	\$224,239.08	-32.2
Voriconazole PO	666.66	721.82	+8.2	\$231,997.30	\$256,460.88	+10.5
Caspofungin	822.70	656.82	-20.2	\$1,863,765.88	\$1,467,699.48	-21.2
Lipid amphotericin B	1238.72	1411.06	+13.9	\$702,414.05	\$810,306.12	+12.5
Global				\$3,129,387.34	\$2,758,705.56	-11.8

Overall savings: \$370,681.78

Lopez-Medrano F. et al. Clin Microbiol Infect. 2013:19:56-61.

Stewardship - Targeted Interventions

A review of an antifungal stewardship program after 453 patient reviews

Valerio M, et al. Poster presentation at the 53rd Annual ICAAC Conference. Denver, CO, September 10-13, 2013.

Drug selection

Dose

Adjustment to micro results Route

Duration

Contributors to Cost

Category	IFI group cost (n=200)	Control group cost (n=200)	Attributable IFI cost	% difference
Pharmacy	\$22,030	\$11,239	\$10,791	37%
Antifungals	\$4524	\$528	\$3996	14%
Other meds	\$17,506	\$10,711	\$6,795	23%
Non-pharmacy	\$49,801	\$31,367	\$18,434	63%
Ward	\$12,952	\$6,803	\$6,149	21%
Laboratory	\$11,872	\$6,679	\$5,193	18%
Professional fee	\$2,755	\$2,247	\$509	2%
Radiology	\$4,402	\$2,386	\$2,016	7%
Procedures	\$5,522	\$5,290	\$232	1%
Other	\$12,298	\$7,964	\$4,334	15%
Total	\$71,831	\$42,606	\$29,225	

Dodds Ashley E, et al. Pharmacother. 2012;32:890-901.

Inappropriate Therapy Can Cost More

Outcome	Appropriate Therapy Group (n=22)	Inappropriate Therapy Group (n=145)	p Value
Mortality No. (%)	6 (27.3)	38 (26.2)	>0.999
LOS (d)	7.3	15.2	<0.001
Post-culture LOS (d)	7.0	10.4	0.037
Total cost (\$)	15,832	33,021	<0.001

Arnold HM, et al. Pharmacotherapy. 2010;30:361-8.

Antifungal Stewardship Outcomes

- 6-year program with antifungal management team
 - Significant increase in chest CT for diagnosis
 - Trend toward less combination antifungal therapy
 - Significant increase in use of fluconazole as first-line for candidemia
 - Stable antifungal use over the study period
 - Drive toward more serum drug concentration monitoring

Mondain V, et al. Infection. 2013;41:621-8.

Voriconazole Concentrations – Outcomes

Posaconazole Concentrations Outcomes

	Study	#1	Study	#2
Quartile	C _{avg} (ng/mL)	Clinical failure	C _{avg} (ng/mL)	Clinical failure
1 st	21.5–557 (289)	44% (28/63)	89.7–322 (206)	55% (23/53)
2 nd	557–915 (736)	21% (13/63)	322–490 (406)	37% (20/54)
3 rd	915–1,563 (1,239)	18% (11/63)	490–733.5 (612)	46% (25/54)
4 th	1,563–3,650 (2,607)	18% (11/63)	733.5–2,200 (1,467)	28% (15/54)

Jang SH, et al. Clin Pharmacol Ther. 2010;88:115-9.

Antifungal Drug Concentration Monitoring

Evidence For Monitoring	Evidence Against Monitoring
Large and unpredictable variability of	Real-time measurements not
blood concentrations	routinely available
Multiple factors influencing drug	Target blood concentrations not
absorption, distribution and elimination,	established; lacking data from
including age, genetic background,	prospective controlled studies
compliance and gastrointestinal function,	systematically exploring efficacy
co-medication, and liver and/or renal	and toxicity associated with drug
function	over- or under-dosing
Emergence of fungal pathogens with	Drug blood concentration might
decreased susceptibility requiring	not reflect exposure and efficacy
optimal adjustment of drug exposure	in infected tissues
Multiple clinical reports of failure associated with drug under-dosing and toxicity associated with drug over-dosing	

Andes D, et al. Antimicrob Agents Chemother. 2009;53:24-34.

Target Drug Concentrations

Drug	Indication	Time of first measurement (hr)	Target blood concent (mcg/mL)	ration
			Efficacy	Safety
Flucytosine	Routine during first week of therapy, renal insufficiency, lacking response to therapy	3–5	Peak >20	Peak <50
ltraconazole	Routine during first week of therapy, lacking response, gastrointestinal dysfunction, co- medication	4–7	Prophy: trough of >0.5 Therapy: trough of >1 to 2	N/A
Voriconazole	Lacking response; gastrointestinal dysfunction, co- medication, IV to PO conversion, severe hepatopathy, unexplained neurological symptoms	4–7	Prophy: trough of >0.5 Therapy: trough of >1 to 2	Trough of <6
Posaconazole	Lacking response, gastrointestinal dysfunction, therapy with proton pump inhibitors, co-medication	4–7	Prophy: trough of >0.5 Therapy: trough of >0.5 to 1.5	N/A

Andes D, et al. Antimicrob Agents Chemother. 2009;53:24-34.

Responding to Concentrations – Voriconazole

Empiric dose adjustment algorithm

Voriconazole serum concentration	Dose Adjustment
≤1 mcg/mL AND lack of response	50% dose increase
1–5.5 mcg/mL	No change
>5.5 mcg/mL	d/c therapy if evidence of toxicity

Pascual A, et al. Clin Infect Dis. 2008;46:201-11.

•	psyllium	1 packet	Oral	Daily	
•	finasteride	5 mg	Oral	Daily	
•	docusate sodium	100 mg	Oral	Q12H SCH	
•	guaiFENesin	1,200 mg	g Oral	Q12H SCH	
•	voriconazole	200 mg	Oral	Q12H SCH	
•	heparin (porcine)	5,000	SC	Q8H	
•	aspirin	81 mg	Oral	Daily	
•	calcium-vitamin D	1 tablet	Oral	Q12H SCH	
•	cholecalciferol	1,000 U	Oral	Daily	
•	leflunomide	10 mg	Oral	Daily	
•	pantoprazole	40 mg	Oral	QAM	
•	multi-vitamin	1 tablet	Oral	Daily	
•	metoprolol	50 mg	Oral	Daily	
•	lovastatin	20 mg	Oral	Nightly	

The voriconazole dose was decreased to 200 mg po q48 hours

A repeat voriconazole concentration was obtained 10 days after the dose adjustment

What do you think the concentration was?

